[36] STEMCELL. (2021). How We Define Our Culture Media and Supplements

[Online]. Available: https://www.stemcell.com/how-do-we-define-our-media.html.

[37] A. F. Rodrigues, M. J. Carrondo, P. M. Alves, and A. S. Coroadinha, “Cellular

targets for improved manufacturing of virus-based biopharmaceuticals in animal

cells,” Trends Biotechnol., vol. 32, no. 12, pp. 602–607, Dec. 2014.

[38] J. Keenan, D. Pearson, and M. Clynes, “The role of recombinant proteins in the

development of serum-free media,” (in eng), Cytotechnology, vol. 50, no. 1-3,

pp. 49–56, 2006.

[39] K. F. Wlaschin and W.-S. Hu, “Fedbatch Culture and Dynamic Nutrient Feeding,”

in Cell Culture Engineering, W.-S. Hu, Ed. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2006, pp. 43–74.

[40] S. P. DiBartola, “Chapter 3 – Disorders of Sodium and Water: Hypernatremia and

Hyponatremia,” in Fluid, Electrolyte, and Acid-Base Disorders in Small Animal Practice

(Third Edition), S. P. Dibartola, Ed. Saint Louis: W.B. Saunders, 2006, pp. 47–79.

[41] I. Nadeau, A. Garnier, J. Côté, B. Massie, C. Chavarie, and A. Kamen,

“Improvement of recombinant protein production with the human adenovirus/293S

expression system using fed-batch strategies,” Biotechnology and Bioengineering,

vol. 51, no. 6, pp. 613–623, 1996.

[42] F. Zagari, M. Jordan, M. Fau – Stettler, H. Stettler, M. Fau - Broly, F. M. Broly, H. Fau

– Wurm, and F. M. Wurm, “Lactate metabolism shift in CHO cell culture: the role of

mitochondrial oxidative activity,” (in eng), no. 1876-4347 (Electronic), 2013.

[43] J. D. Young, “Metabolic flux rewiring in mammalian cell cultures,” Curr. Opin.

Biotechnol., vol. 24, no. 6, pp. 1108–1115, 2013.

[44] C. Boero et al., “Design, development, and validation of an in-situ biosensor array

for metabolite monitoring of cell cultures,” Biosens. Bioelectron., vol. 61,

pp. 251–259, 2014/11/15/ 2014.

[45] S. S. Ozturk, J. C. Thrift, J. D. Blackie, and D. Naveh, “Real-time monitoring and

control of glucose and lactate concentrations in a mammalian cell perfusion re-

actor,” Biotechnol. Bioeng., vol. 53, no. 4, pp. 372–378, 1997.

[46] A. Nikolay, T. Bissinger, G. Granicher, Y. Wu, Y. Genzel, and U. Reichl,

“Perfusion Control for high cell density cultivation and viral vaccine production,”

Methods Mol Biol, vol. 2095, pp. 141–168, 2020.

[47] T. M. Larson, M. Gawlitzek, H. Evans, U. Albers, and J. Cacia, “Chemometric

evaluation of online high-pressure liquid chromatography in mammalian cell cul-

tures: Analysis of amino acids and glucose,” Biotechnol. Bioeng., vol. 77, no. 5,

pp. 553–563, 2002.

[48] A. P. Teixeira, R. Oliveira, P. M. Alves, and M. J. T. Carrondo, “Advances in online

monitoring and control of mammalian cell cultures: Supporting the PAT initiative,”

Biotechnol. Adv., vol. 27, no. 6, pp. 726–732, 2009.

[49] L. Zhao, H.-Y. Fu, W. Zhou, and W.-S. Hu, “Advances in process monitoring tools

for cell culture bioprocesses,” Engineering in Life Sciences, vol. 15, no. 5,

pp. 459–468, 2015.

[50] D. Eibl and R. Eibl, “Bioreactors for Mammalian Cells: General Overview,” in Cell

and Tissue Reaction Engineering: With a Contribution by Martin Fussenegger and

Wilfried Weber. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 55–82.

[51] A. P. Sommer, M. K. Haddad, and H.-J. Fecht, “It is time for a change: Petri Dishes

weaken cells,” J. Bionic Eng., vol. 9, no. 3, pp. 353–357, 2012.

[52] O.-W. Merten, “Advances in cell culture: anchorage dependence,” (in eng), Philos.

Trans. R Soc. Lond. B Biol. Sci., vol. 370, no. 1661, p. 20140040, 2015.

[53] M. Butler, Animal cell culture and technology. London; New York: BIOS Scientific

Publishers, 2004.

130

Bioprocessing of Viral Vaccines